Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models. Oftentimes fine-tuned models are readily available but their training data is not, due to data privacy or intellectual property concerns. This creates a barrier to fusing knowledge across individual models to yield a better single model. In this paper, we study the problem of merging individual models built on different training data sets to obtain a single model that performs well both across all data set domains and can generalize on out-of-domain data. We propose a dataless knowledge fusion method that merges models in their parameter space, guided by weights that minimize prediction differences between the merged model and the individual models. Over a battery of evaluation settings, we show that the proposed method significantly outperforms baselines such as Fisher-weighted averaging or model ensembling. Further, we find that our method is a promising alternative to multi-task learning that can preserve or sometimes improve over the individual models without access to the training data. Finally, model merging is more efficient than training a multi-task model, thus making it applicable to a wider set of scenarios.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Memory-safety bugs introduce critical software-security issues. Rust provides memory-safe mechanisms to avoid memory-safety bugs in programming, while still allowing unsafe escape hatches via unsafe code. However, the unsafe code that enhances the usability of Rust provides clear spots for finding memory-safety bugs in Rust source code. In this paper, we claim that these unsafe spots can still be identifiable in Rust binary code via machine learning and be leveraged for finding memory-safety bugs. To support our claim, we propose the tool textttrustspot, that enables reverse engineering to learn an unsafe classifier that proposes a list of functions in Rust binaries for downstream analysis. We empirically show that the function proposals by textttrustspot can recall $92.92\%$ of memory-safety bugs, while it covers only $16.79\%$ of the entire binary code. As an application, we demonstrate that the function proposals are used in targeted fuzzing on Rust packages, which contribute to reducing the fuzzing time compared to non-targeted fuzzing.
translated by 谷歌翻译
Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both the effectiveness and efficiency of the proposed FedMN over the baselines.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
我们提出了Kkexgen,这是一种用于计算机辅助设计(CAD)构造序列的新型自回旋生成模型,其中包含草图和伸出的建模操作。我们的模型利用不同的变压器体系结构编码构造序列的拓扑,几何和挤压变化为分离的代码簿。自回归变压器解码器生成CAD构造序列,共享代码簿向量指定的某些属性。广泛的实验表明,我们的删除代码书表示会生成多样化和高质量的CAD模型,增强用户控制,并有效地探索设计空间。该代码可在https://samxuxiang.github.io/skexgen上找到。
translated by 谷歌翻译
R2是一种新颖的在线任何角度路径计划者,它使用基于启发式错误或射线铸造方法在具有非凸线,多边形障碍物的2D地图中找到最佳路径。R2与传统的自由空间计划者具有竞争力,如果查询具有直接视线,请迅速找到路径。在很少有障碍轮廓的大稀疏地图上,在实践中可能会发生,R2的表现要优于自由空间规划师,并且可能比最先进的自由空间扩展计划者Anya快得多。在带有许多轮廓的地图上,Anya的性能比R2快。R2建立在Rayscan上,引入了懒惰搜索和源 - 路边计数器,可在连续的轮廓上乐观地找到继任者。这种新颖的方法绕过了锯齿状轮廓上的大多数继任者,以减少昂贵的视线检查,因此不需要预处理才能成为在线竞争性的任何角度策划者。
translated by 谷歌翻译
图形神经网络(GNN)在许多领域中显示出优异的应用,其中数据基本上表示为图(例如,化学,生物学,推荐系统)。在该静脉中,通信网络包括许多以图形结构方式(例如,拓扑,配置,交通流量)自然表示的许多基本组件。该职位文章将GNNS作为用于建模,控制和管理通信网络的基本工具。 GNN表示新一代的数据驱动模型,可以准确地学习和再现真实网络后面的复杂行为。因此,这种模型可以应用于各种网络用例,例如规划,在线优化或故障排除。 GNN在传统的神经网络上的主要优点在于在培训期间应用于其他网络和配置时的前所未有的泛化能力,这是实现用于网络实际数据驱动解决方案的关键特征。本文包括关于GNN的简要教程及其对通信网络的可能应用。为了展示这项技术的潜力,我们展示了两种用例,分别应用于有线和无线网络的最先进的GNN模型。最后,我们深入研究了这一小说研究区的关键开放挑战和机会。
translated by 谷歌翻译
我们考虑临床应用异常定位问题。虽然深入学习推动了最近的医学成像进展,但许多临床挑战都没有完全解决,限制了其更广泛的使用。虽然最近的方法报告了高的诊断准确性,但医生因普遍缺乏算法决策和解释性而涉及诊断决策的这些算法,这是关注这些算法。解决这个问题的一种潜在方法是进一步培训这些模型,以便除了分类它们之外,除了分类。然而,准确地进行这一临床专家需要大量的疾病定位注释,这是对大多数应用程序来实现昂贵的任务。在这项工作中,我们通过一种新的注意力弱监督算法来解决这些问题,该弱势监督算法包括分层关注挖掘框架,可以以整体方式统一激活和基于梯度的视觉关注。我们的关键算法创新包括明确序号注意约束的设计,实现了以弱监督的方式实现了原则的模型培训,同时还通过本地化线索促进了产生视觉关注驱动的模型解释。在两个大型胸部X射线数据集(NIH Chescx-Ray14和Chexpert)上,我们展示了对现有技术的显着本地化性能,同时也实现了竞争的分类性能。我们的代码可在https://github.com/oyxhust/ham上找到。
translated by 谷歌翻译